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Synthesis of 2 0-hydrazine oligonucleotides and their efficient
conjugation with aldehydes and 1,3-diketones
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Abstract—Oligodeoxyribonucleotides that contain a novel nucleoside, 2 0-O-(2-hydrazinoethyl)uridine, were synthesised by
NaBH3CN reduction of hydrazones formed from 2 0-O-(2-oxoethyl)oligonucleotides with FmocNHNH2, followed by concd aq
NH3 deprotection. The 2 0-hydrazine oligonucleotides obtained were then used to synthesise a number of conjugates with aldehydes
via hydrazone formation and with1,3-diketones via pyrazole formation. The method was shown to be applicable for the preparation
of oligonucleotide–peptide conjugates.
� 2006 Elsevier Ltd. All rights reserved.
Since its extensive optimisation in the 1980s, automated
oligonucleotide synthesis has now become almost rou-
tine. However, chemical modification of nucleic acids
is still a challenge for the organic chemists. Rapid devel-
opment of biotechnology, genomics and nucleic acid-
based diagnostics over the recent years is largely a result
of the widespread application of various chemically
modified oligonucleotides. A number of papers describe
the synthesis of reactive oligonucleotides, which possess
nucleoside residues equipped with functionalised side-
chains that could be used for conjugation with other
molecules, notably peptides, to increase the uptake of
the oligonucleotides by cells for in vitro and in vivo
studies. Peptides seem to be particularly versatile ‘carri-
ers’ as they can both improve transmembrane delivery
and affect intracellular localisation.1 Many methods
for the preparation of oligonucleotide–peptide conju-
gates have been reviewed recently.2–4 Amongst them,
conjugation via addition–elimination reactions of the
carbonyl group offers excellent yields and extraordinary
regioselectivity, which are invaluable for the synthesis of
oligonucleotide bioconjugates.5–7
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For the modification of oligonucleotides, efforts have
been focused mostly on their aldehyde and aminooxy
derivatives and development of the oligonucleotide
modification thereof. Very few examples of hydrazine-8

and hydrazide-linked9,10,11 oligonucleotides are found
in the literature. Hydrazides appear to be less attractive
than hydrazines since their hydrazones are more hydro-
lytically labile than those of hydrazines, and at least
some hydrazides are unstable under typical conditions
of oligonucleotide deprotection, for example, concd aq
ammonia.11

Previously, we have shown that oligonucleotides con-
taining 2 0-O-(2-oxoethyl)uridine12 and 2 0-O-(2-oxo-
ethyl)cytidine13 are useful reagents for conjugation
with structurally diverse hydrazines, hydrazides,
O-alkylhydroxylamines and 1,2-aminothiols14 both in
solution12,14 or on solid phase.13 Here we report the con-
version of the 2 0-aldehyde group into a 2 0-hydrazine and
an efficient conjugation of the 2 0-hydrazine oligonucleo-
tides with aldehydes, including N-glyoxylylpeptides or
1,3-diketones. We demonstrate that pyrazoles formed
in the case of conjugation with 1,3-diketones are stable
over a wide pH range and remain unaffected by the stan-
dard oligonucleotide deprotection conditions.

The synthesis of oligonucleotides containing 2 0-O-(2,3-
dihydroxypropyl)uridine 1 was performed as described
earlier.12,14 The dihydroxypropyl group was then
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Table 1. Sequences and MALDI-TOF MS analysis of the 2 0-modified
oligonucleotides

Oligonucleotide
sequence, 50-to-3 0

MALDI-TOF MS
calcd/found [M+H]+

I CUdCCCAGGCTCA 3658.4/3660.1
II CUdCCCAGGCUdCA 3734.5/3735.9
III CUhCCCAGGCTCA 3642.4/3645.2
IV CUhCCCAGGCUhCA 3701.5/3702.1

Ud—20-O-(2,3-dihydroxypropyl)uridine.
Uh—20-O-(2-hydrazinoethyl)uridine.
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oxidised to a 2 0-aldehyde group by sodium periodate
treatment (Scheme 1). Subsequent addition of 9-fluore-
nylmethyl carbazate15 to the 2 0-aldehyde oligonucleo-
tides was carried out in the presence of NaBH3CN.12

The resultant Fmoc-protected oligonucleotides 2 were
purified easily by reverse-phase (RP) HPLC due to the
strong hydrophobic properties of the Fmoc group
(Fig. 1). Deprotection of 2 using concentrated aqueous
ammonia led to 2 0-hydrazine oligonucleotide 3, which
was then treated with aliphatic or aromatic aldehydes
or 1,3-diketones16 to give oligonucleotide derivatives of
types 4 and 5, respectively.

For example, 2 0-hydrazine oligonucleotides III and IV
(Table 1) were reacted with a range of aldehydes or
1,3-diketones to give conjugates IIIa–i and IVa–i,
Scheme 1. Synthesis of the 2 0-hydrazine oligonucleotides and their
conjugates with aldehydes and 1,3-diketones. Reagents and conditions:
(a) 0.1 M NaIO4, 0.2 M NaOAc, pH 5.0, 1 h; (b) FmocNHNH2,
NaBH3CN, 0.2 M NaOAc, pH 5.0, 1 h; (c) concd aq NH3, 25 �C, 3 h;
(d) RCHO, 0.2 M NaOAc, pH 5.0, 1 h; (e) (R 0CO)2CH2, pH 6.0,
30 min.

Figure 1. RP-HPLC of the reaction mixtures. Key: (a) crude oligo-
nucleotide diol I; (b) conjugation of the 2 0-aldehyde from I with
FmocNHNH2: peak 1—2 0-aldehyde I, peak 2—Fmoc–oligonucleotide.
respectively (Table 2). The conjugations proceeded
smoothly, albeit an attempt to carry out a reaction with
2-(2-nitrophenyl)malondialdehyde led to the formation
of a complex mixture (data not shown). The latter could
be ascribed to the concomitant reaction of the 1,3-dial-
dehyde with nucleobases, for example, guanine, as has
been shown for unmodified oligonucleotides.17 Re-
cently, Otteneder et al.18 demonstrated that hydrazines
react preferentially with dialdehydes and could disrupt
the malondialdehyde–guanine adduct. However, addi-
tional treatment of the reaction mixture with 5 equiv
of 2-hydrazinoethanol resulted in an increase in the
number of products without any selective recovery.
Surpisingly, no side reactions of the diketones with
unmodified mixed-sequence oligonucleotides were ob-
served under the reaction conditions except that
1,1,1,5,5,5-hexafluoro-2,4-pentanedione yielded less
than 5% of side-products after 90 min of reaction (data
not shown).

In the case of some of the 1,3-diketones two products
were formed (Fig. 2). MALDI-TOF mass spectrometry
showed the same molecular masses for both products.
Such a difference in the retention time may be a result
of the incomplete conversion of the intermediate
mono-hydrazone 6 or hydroxypyrazoline 7 into pyra-
zole 8 during conjugation (Scheme 2). The water mole-
cule could then be eliminated during MALDI-MS
analysis. Such an explanation is supported by the ratio
of the RP-HPLC signal areas and the gradual disappear-
ance of peak 2 (Fig. 2). In the case of the 2,4-pentanedi-
one reaction, only a single peak due to the pyrazole
conjugate (IIIf) was observed (Table 2). Incorporation
of one trifluoromethyl electron-withdrawing group led
to the formation of two products (IIIg). The faster mov-
ing product seems to be the mono-hydrazone or hydroxy-
pyrazoline (Fig. 2, peak 2). The presence of two
trifluoromethyl groups seems to decrease the rate of pyr-
azole formation, so the main part of the product is the
pyrazoline or mono-hydrazone conjugate (IIIh, Table
2). Prolonged heating of the isolated faster-moving
products in aqueous solution (55 �C overnight) led to
the complete conversion into the appropriate slower-
moving peak that is believed to be the pyrazole conju-
gate 5 (Scheme 1). Reaction with 4,6-dioxoheptanoic
acid produced a broadened peak on RP-HPLC (data
not shown), which could be explained by the formation
of a mixture of isomeric 3,5-disubstituted pyrazoles.

We have also studied the hydrolytic stability of the con-
jugates19 (Table 3). All the conjugates were sufficiently



Table 2. Yields and MALDI-TOF MS of the conjugates of the 2 0-hydrazine oligonucleotides

Conjugated molecule Oligonucleotide

III IV

a Pentanal 82a (3694.5/3717.2)b 73a (3822.6/3826.2)b

b 4-Methoxybenzaldehyde 93a (3744.5/3769.1)b 78a (3922.7/3924.0)b

c 1-Pyrenecarboxaldehyde 89a (3842.7/3745.2)b 81a (4117.0/4117.1)b

d OCHCO-LLK amide 85a (4035.9/4075.2)b 69a (4586.5/4626.3)b

e OCHCO-LLGKV amide 82a (4206.1/4247.0)b 65a (4845.9/4887.3)b

f (MeCO)2CH2 70a (3690.5/3693.5)b 60a (3814.6/3856.1)b

g MeCOCH2COCF3 19 + 57c (3744.5/3740.4)b 67d (3922.6/3960.1)b

h (CF3CO)2CH2 67 + 5c (3798.4/3800.6)b 78d (4030.5/4033.1)b

i MeCOCH2CO(CH2)2CO2H 69d (3741.5/3782.1)b 54d (3930.7/3932.4)b

a Yield of the conjugate is based on RP-HPLC signal areas.
b MALDI-TOF MS: calcd/found [M+H]+.
c Yields of faster- and slower-moving conjugates are given.
d After overnight heating at 55 �C.

Figure 2. RP-HPLC profiles of reaction mixtures. Key: (a) purified 2 0-
hydrazine oligonucleotide III (peak 1); (b) conjugation of 2 0-hydrazine
oligonucleotide III with 1,1,1-trifluoro-2,4-pentanedione: peak 1—
starting 2 0-hydrazine III, peak 2—intermediate conjugate (mono-
hydrazone or pyrazoline), peak 3—final conjugate IIIg (pyrazole).

Scheme 2. Reaction of a mono-substituted hydrazine with a
1,3-diketone.

Table 3. Stability of hydrazones IIIa, IIIb and pyrazole conjugates IIIf

pH Hydrolysis (%)

3 h 24 h

IIIa IIIb IIIf IIIa IIIb IIIf

3.0 <5 <1 <1 8 <5 <1
4.0 <1 <1 <1 <1 <1 <1
8.0 <5 <1 <1 11 <5 <1
9.0 15 <5 <1 35 9 <1
10.0 19 <5 <1 50 14 <1
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stable at slightly acidic and neutral pH, but partial
hydrolysis of hydrazones in basic conditions was ob-
served. The pyrazole conjugates were unchanged at all
the pH values studied.

In conclusion, we have developed an efficient method for
the synthesis of 2 0-O-(2-hydrazinoethyl)oligonucleotides
from the corresponding 2 0-aldehyde derivatives. The
resulting 2 0-hydrazine oligonucleotides were shown to
react with various aliphatic and aromatic aldehydes,
including side-chain functionalised, for example, N-gly-
oxylylpeptides and fluorescent, for example, pyrene,
or 1,3-diketones. The 1,3-diketone reaction proceeds via
an isolable intermediate that could be a mono-hydr-
azone of the 1,3-diketone or a hydroxypyrazoline, and
is converted fully into a stable product (pyrazole) after
further reaction. We have affirmed the stability of the
hydrazone conjugates at neutral and mildly acidic pH,
whilst the pyrazole conjugates are stable over the pH
range studied. The method described could be employed
for the preparation of oligonucleotide–peptide conju-
gates that are useful compounds for biological applica-
tions. The pyrazole conjugates appear to be the most
interesting because of the stability of the linkage. Studies
with the latter compounds are underway and will be
published in due course.
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